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ABSTRACT 

Extensive measurements of flaming and smoldering fires and nuisancelenvironmental sources 
were performed with Fourier Transform Infrared (lT-IR) spectroscopy of gas phase products. 
A neural network model was formulated using the so-called Learning Vector Quantization 
(LVQ) network approach. The LVQ approach contains input and output layers with a hidden 
layer being a Kohenen layer. The hidden layer learns and performs classification. The inputs 
to the network are concentrations (from FT-IR measurements) of eighteen (18) gas species. 
The outputs of the network are classification of the input data as a flaming fire, smoldering 
fire, nuisance or environmental source. The network was trained and tested using the test 
data collected during this project. The results were very successful as, among the 248 cases 
tested, only 12 cases were misclassified, mostly due to the difficulties in classifying the 
modes of combustion during a transition from a smoldering to a flaming fire. Each case rep- 
resents the gas phase concentration data at a time step from one of the validation fires, which 
were different types of fires from the training set. A first generation fire detection system us- 
ing FT-IR gas measurements and neural networks has been built and implemented. 

KEYWORDS: Fire Detection, Infrared Diagnostics, Neural Networks, False Alarms, FT-IR 
Gas Measurements 

INTRODUCTION 

Future fire detection systems should have the ability to discriminate signatures between fire 
and non-fire sources, because nuisance alarm problems have plagued existing smoke detec- 
tors. Current residential smoke detectors can respond very quickly, but suffer from the 
inability to discriminate between real fire smoke and other sources. Data from 1980's U.S. 
fire incidents show that 95% of smoke alarm signals were for non-hazardous conditions [I]. 
Even with the redundancy used in current aircraft fire detection systems, with the aim that a 
fire detector responds positively to a real fire and negatively to a non-threatening condition, 
false alarms versus real fires are at a ratio between 10: 1 and 500: 1 [2,3]. The consequences of 
a detector mistakenly classifying a nuisance signal as a fire threat are costly and sometimes 
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dangerous. In high value installations, such as semiconductor clean rooms and telephone 
central offices, it is obvious that reliable fire detection systems are needed, since usually these 
detection systems are used to activate fixed fire suppression systems, and false discharges are 
certainly undesirable. False alarms can cause unnecessary down time and undermine the op- 
erator's confidence in the monitoring systems. 

In view of this problem, researchers have attempted to use multi-sensor measurements to- 
gether with advanced artificial intelligence methods to build a new generation of fire 
detection systems over the last decade [4-91. Okayama et a1 [6-81 were one of the first re- 
search groups to apply an artificial intelligence method, neural networks, for fire detection, 
although with limited success. Okayama used odor sensors together with a backpropagation 
neural network [lo] to successfully distinguish between smoldering fires and environmental 
sources such as coffee powder and perfume [6]. They experimented with several neural net- 
work models using inputs from a CO sensor, a temperature sensor, and a smoke sensor to 
obtain fire probability, fire risk, and smoldering fire probability [S]. Milke and his colleagues 
have substantially furthered the work of Okayama [4,11,12]. More sensors (CO, C02 ,  Tagu- 
chi, and smoke and temperature) were used in Milke9s studies. They also tested more 
extensive fire (flammable liquid, paper, cotton, polystyrene, cardboard , etc,) and non-fire 
(environmental) (furniture polish, toast, nail polish remover) sources [4,11,12]. Both large 
[4,11] and small [l2] scale tests were performed. 

Principal component analysis (PCA) was conducted for large scale test data [ l l ]  and results 
showed that PCA of sensor data can improve the discriminations of flaming, smoldering fires 
and nuisance sources, but a high probability of false alarms still exists. An elementary expert 
system was developed for the same large scale test data [I21 which uses appropriate C 0 2  or 
temperature levels, levels of Taguchi sensor readings, and CO levels to distinguish flaming, 
smoldering fire and nuisance sources. The expert system correctly classified the flaming 
source, while 62% of smoldering and 87% of nuisance and ambient sources were also cor- 
rectly identified. It is not surprising to learn that the greatest challenge lies in distinguishing 
between smoldering and nuisancelenvironmental sources. A so-called ellipsoidal neural net- 
work was used to process the small scale data for a variety of fire and non-fire sources [4], 
and success rates were much higher when compared to the expert systems described above 
(scale differences should not make such a high difference). They also acknowledged that the 
network failed to accurately classify the smoldering fire (only 60% success), as these are of- 
ten misclassified as environmental sources. The explanation of this problem could be the 
lack of experimental data, but more likely it is due to the limitation of sensors which produce 
similar responses between smoldering sources and environmental excursions. Another draw- 
back from that work [4], which the author did not clarify, is that the neural network was only 
used to do classification at maximum (peak) excursions (temperature, concentration), and 
hence the accuracy of the method at an earlier stage (for early detection of hazardous condi- 
tions) was not known. 

Ishii et al. [I31 used a time-delayed neural network to identify fire and non-fire situations for 
a limited number of tests they conducted. The use of historical information (previously col- 
lected data) in the neural network architecture can reduce false alarms, given the transient 
nature of fire and other excursion phenomena. Another interesting aspect of their approach 



was the use of the ASET smoke transport model in a reverse way, i.e., temperature, smoke 
concentration and CO concentration near the ceiling from the sensors were employed to cal- 
culate such quantities as heat release rate, smoke generation rate, and CO generation rate, 
which in turn were used as the inputs to the neural network. This approach is similar to the 
so-called hybrid first principles-neural network method [14]. In general, this hybrid method 
is more accurate than a neural network approach alone [14]. However, Ishii's work only in- 
volved a handful of tests, and the use of the simple smoke transport model ASET should be 
carefully reviewed. Nevertheless, their approach represents one of the most promising meth- 
ods in developing new fire detection systems and is worthy of further investigation. Other 
attempts to improve fire detection have included gas sensing [15,16] and smoke detectors 
with new algorithms [17]. 

We have previously demonstrated that an FT-IR based system is feasible to detectflaming 
fires [5,9] in studies where the FT-IR measurements of fire and non-fire gases were made in 
open-path, cross duct, and extractive modes. The current effort is concentrated on extractive 
mode measurements, since the most of the current fire detection technologies (e.g. VESDA 
and AnaLaser) for cleanrooms and telephone central offices are based on air sampling tech- 
niques where the air samples from multiple locations of the rooms are drawn and delivered 
through an extensive piping network to a particle analyzer. The FT-IR system can be easily 
incorporated in this type of fire detection system, and comparisons with existing technologies 
can be made. The rich gas phase information from an FT-IR spectrometer can be processed 
by an appropriate neural network model to build an intelligent fire detection system, as de- 
scribed below. 

EXPERIMENTAL 

Smoldering fires and environmentaVnuisance sources were the focus of the current project, as 
flaming fires were extensively tested previously [5,9]. The experimental set-up is depicted in 
Fig. 1, where a smoldering fire test is illustrated. A hot plate was placed on a fire brick base. 
The sample was placed on the hot plate with a wire mesh screen in between. A sampling port 
was located about three feet above the sample. The gas sample was filtered and transported 
through heated tubes to an FT-IR gas cell. The heated tubes were maintained at about 150°C 
to prevent water condensation (condensation of water would cause inaccurate analysis of 
some gases, especially HC1). For flaming fire tests, a methane torch was used to ignite the 
sample and the sample was mounted vertically. In most cases, the burning side of the sample 
was exposed to an external heat flux supplied by two radiant heaters (manufactured by Re- 
search Inc.). The nuisance or environmental sources were simulated by either introducing 
gases (e.g., CF.4 through the same tube that delivered methane to the pilot, or placing a vola- 
tile liquid in a 6" diameter pan. A welding machine was used to supply high voltage and 
current to smolder a cable, simulating cable overheating by a power surge. These tests were 
conducted in AFR's 600 m3 Laboratory Combustion Facility (LCF), and an On-Line Tech- 
nologies Multi-Gas FT-IR 2010 spectrometer was primarily used for the measurements, 
although a few flaming fire tests were measured using a Bomem MB 100 FT-IR spectrometer. 
Numerous materials were tested, including Polyurethane (PU), Polyvinylchloride (PVC), 
Polymethylmethacrylate (PMMA), Polypropylene (PP), Polystyrene (PS), Douglas fir wood 
(DF), low density Polyethylene (LDPE), aqueous Ammonia (NH,), Tetrafluoromethane (CF4, 



Isopropyl alcohol (PA), regular extension cable, and coaxial cable. The materials were 
burned in flaming andlor smoldering modes. Selected tests were repeated to check the repro- 
ducibility. 

Exhaust 

Sample Hot Plate with 
Wire Mesh Fire Brick 

Figure 1. A schematic diagram of FT-IR gas measurements of fire and non-fire events. 

ANALYSIS OF EXPERIMENTAL DATA 

The gas-phase combustion (and before ignition) products from a fire can be classified into 
different categories: 1) volatile fuels; 2) pre-ignition pyrolysis products; 3) fuel-specific coin- 
bustion products; 4) non-specific combustion products (CO. COz, H20).  By analyzing raw 
spectra from the FT-IR measurements, one can see clearly the fingerprints of some distinctive 
species evolved from the burning of materials, as illustrated in Figs. 2a and 2b. Fig. 2a shows 
part of a spectrum (2700-3100 cm-I) from a smoldering fire of a regular extension cable (with 
a PVC jacket). The evolution of HC1 is evident, although the HCl band is overlapped some- 
what with a hydrocarbon band. It is also not surprising to see HC1 evolution from a PVC 
smoldering fire (in fact it is a pyrolysis process) as shown in Fig. 2b. 

Fig. 3 shows concentrations of some fuel-specific species from burning different materials. 
N 2 0  and formaldehyde were clearly observed in a Douglas fir smoldering-flaming fire test 
shown in Fig. 3a, while a fairly large amount of C2H4 and C2Hz can be noticed in a smolder- 
ing-flaming fire test of LDPE (Fig. 3b). Aside from observing the evolution of regular 
species such as CH4 and CH30H from burning polymeric materials, large amounts of HC1 
(peak concentration of -160 ppm) from smoldering regular extension cables were also ob- 
sewed (Figs. 3c, 2a). Table 1 summarizes the gas species detected by the FT-IR during 
excursions (fire or non-fire) of various materials. 

We have analyzed C0/CO2 data from both the flaming and smoldering modes of various 
fires. Fig. 4 illustrates the CO and COzconcentrations and the ratio of CO/C02 during an 
LDPE smoldering-flaming fire test. It can clearly be seen that this ratio drops from around 5 
to less than 0.5 when the smoldering fire became a flaming fire. The CO and COz concen- 
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Table 1: Species Observed By FT-IR During Fire and Non-Fire Tests 

I carbons 
PVC 1 Smoldering / I CHI, CH3OH. C~HI,  HCI / C02. CO, H 2 0  

I I I I I 

Material 

Douglas fir 

sion Cable I I I I C2H4, HCI. NO, hydrocar- I I 

Excursion 
Type 

Volatile 
Fuels 

PMMA 
PU 
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Flaming and 
Smoldering 

Pyrolysis 
Products 

Smoldering 
Smoldering 

Smoldering 
and Flaming 
Smoldering 

Coaxial Cable 

Ammonia 

I drocarbons 
Freon CF4 1 Release 1 CF4 1 I NIA 

CHI, CH3OH, CzH2. NzO, 
C2H4, formaldehyde, hydro- 

IPR 

IPR 

BUILDING OF NEURAL NETWORK MODELS 

Fuel Specific Combustion 
Products 

COz, CO, HzO 

MMA 

Smoldering 

Vaporiza- 

In the past decade, significant efforts have been made to develop computing strategies that 
simulate biological systems. The resulting artificial neural networks (ANN) are very simple 
in comparison to biological networks (such as human brains), but are well suited for per- 
forming tasks such as pattern recognition, cost minimization, etc. [18,19]. A typical ANN is 

Combustion 
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CH4, CHxOH, NO, formal- 
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NHx 

COz, CO, H 2 0  
C02, CO, H 2 0  

C02, CO, H20 

COz, CO, H 2 0  

IPR 

IPR 

bons 
CH4, CH3OH, C2H2, C2H4, 
HCI, NO, hydrocarbons 
NIA 

Co2,  CO, ~~0 

NIA 

IPR, CH4, CzH6, CZHJ. hy- C02, CO, H 2 0  
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made up of three layers of processing units (nodes) and weighted connections between the 
layers of nodes. The input data is introduced at the input layer and is fed to the hidden layer 
through the weighted connections. Each node of the hidden layer sums its output of the net- 
work. The function of the network is determined by the activation functions applied by the 
nodes and by the weights of the connections between the nodes. The weights can be strong or 
weak, and positive (excitatory) or negative (inhibitory). Typically, nonlinear activation func- 
tions (sigmoidal, hyperbolic tangent) are used in order to allow the network to adapt to 
nonlinear problems. 

Once the configuration of the ANN is defined for a given application, and the appropriate ac- 
tivation functions are selected, a network must be trained to perform the desired task. This is 
analogous to "learning" in a biological system. The usual method involves introducing train- 
ing data to the ANN and comparing the output of the network to the correct or desired output. 
The error is then propagated back through the network and adjustments are made to the 
weights. This process is repeated until the error level falls below an acceptable level. 

Neural network and fuzzy logic models can be used to identify whether there is a fire or non- 
fire (environmental nuisance) event, and to classify whether it is a flaming or smoldering fire, 
if the event is indeed a fire. Numerous neural network models have been used in developing 
a new generation of fire detection systems [4,6,8,13]. They have used the most popular back- 
propagation neural network techniques [lo], and classifications of different modes of fires as 
well as non-fire source were made with good success. The inputs to the networks are all 
similar, including smoke sensors, odor sensors, temperature and heat release rate measure- 
ments, measurements of some non-fuel-specific species such as, CO, CO?, and 0 2 .  
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A total of 32 sets of experimental data were used to build the LVQ network. The network 
was first trained using data on PMMA, DF, PVC, coaxial Cable, PS, PP, NH3, CFI. The rest 
of the experimental data (IPA Spill, LDPE fires, PU fires, regular cable fires) were used to 
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validate the trained LVQ network. The results were very successful as, among the 248 cases 
of time series data tested, only 12 cases 
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Figure 6. A Learning Vector Quantization (LVQ) neural mization of the network, We 
network model for classification of fire and nonfire events. should emphasize that the raw 
The inputs of the model are the gas species concentrations concentration data were used 
measured by an FT-IR spectrometer and the output of the with no additional processing, 
model identifies fire and nonfire events as well as the modes and the network was used to 
of combustion. do the classification at 
time step. We believe that with more careful data processing, such as smoothing of raw data, 
an even higher success rate can be attained. Another approach would be to develop three 
separate neural network models and run them in parallel, and choose the best two out of three 
in case of a discrepancy. The resulting network will be rugged, and a trained network can be 
incorporated into a supervisory control and data acquisition (SCADA) system for a new gen- 
eration fire detection system. 

We have incorporated the above trained LVQ network into our LabView-based data acquisi- 
tion system which connects with an On-Line 2010 Multi-Gas FT-IR spectrometer. A real 
time fire detection system has been constructed. Preliminary tests of this integrated software 
using the test data we described above has been satisfactory. However, these tests are in no 
way rigorous, as we have used the same experimental system to build the network. Additional 
tests (other burning materials, geometric arrangements, etc.) are needed in order to va!idate 
the accuracy and improve the robustness of the new fire detection system. The system also 
needs testing in a field installation. 

To a large extent, the issue of how the system will respond to ail unknown signal has been 
addressed by using a separate set of training fire tests and validation fire tests. Of course. one 
cannot test the entire universe of all possible gas concentration patterns that can be presented 
to the system. In general, it is well known that feed forward neural nets are typically very 



good at interpolation, but do rather poorly on extrapolation. Sometimes good extrapolation 
can be obtained if the actual physical phenomenon (which is not known) behaves like the data 
in the neural network training set. 

The Learning Vector Quantization (LVQ) network used in this work is not a feed forward 
network, and it has a Kononen layer as its hidden layer. This network is more accurate than 
feed forward network and it can extrapolate if the network is well trained. 

Some general comments regarding this technique: because of the inherent scaling nature of a 
neural network, it is not important where the gas concentrations are measured so long as the 
location of the measurement is not in the immediate vicinity of the flame. The same inherent 
characteristics of a neural network also may have the advantage of enabling this technique to 
be used for different facilities from those that the techniques have been tested for. We can 
also argue that a well-trained network using small scale fire test data can be applied to large 
and real scales. The current cost of an IT-IR spectrometer is about $40,000 (US). The addi- 
tional cost of a piping network would be comparable to existing commercialized AnaLASER 
and VESDA systems, and the operation and maintenance costs would be similar to these sys- 
tems. The current system can be used more widely than these commercial systems (such as in 
particle-laden facilities) and with more development of the hardware, the cost can be signifi- 
cantly reduced. 

CONCLUSIONS 

It can be concluded that FT-IR spectroscopy can give multiple gas concentrations needed to 
build an advanced fire detection system. The gas concentration information together with 
intelligent data processing techniques can be used to identify fire or non-fire events as well as 
the modes of combustion, at least for the cases we have tested. Among the 248 sets of time 
series data for different fire and non-fire events, the Learning Vector Quantization network 
has correctly predicted 96% of the cases, a promising result for building a robust early fire 
detection system. Additional training and validation tests and software development will be 
needed to develop a field deployable fire detection system for high value facilities, such as 
semiconductor cleanrooms, telephone central offices, navy ships, aircraft and nuclear power 
plants. 
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