Preface

This symposium evolved from discussions initiated by Dr. P. H. Thomas, Prof. K. Kawagoe, Prof. K. Akita, Dr. J. G. Quintiere, Dr. R. Friedman, and many others throughout the world. Symposium committees and technical areas were established at an informal meeting in May 1984 at Borehamwood, England. As stated in the Fall 1984 Call for Papers, the purpose of these symposia will be "to provide a forum dedicated to all aspects of fire research and their application to solving problems presented by destructive fire." Due to the enthusiastic response to that call, the original plan for a three-day meeting was expanded to a full week of simultaneous sessions, October 7–11, 1985.

The chapters that follow are arranged in ten technical sessions, as in the symposium program. The session chairs, listed on each session's title page, were responsible for coordinating a rigorous peer review that resulted in acceptance of approximately two-thirds of the submitted papers. We are particularly grateful to these ten scholars who gave so generously of their time and expertise, and who are primarily responsible for the quality of these proceedings.

Prof. T. Kubota presented the 1985 Howard W. Emmons Invited Lecture due to Prof. E. E. Zukoski's, hopefully short, illness. Invited papers were also given by Prof. H. W. Emmons, Prof. O. Pettersson, Dr. R. Friedman, Dr. E. Kendik, Dr. J. Unoki, Prof. W. Johnson, and Prof. D. J. Rasbash. The authors represented Austria, Belgium, Canada, Denmark, Federal Republic of Germany, France, Hong Kong, Japan, Luxembourg, Netherlands, Norway, Spain, Sweden, Union of Soviet Socialist Republics, United Kingdom, and United States of America.

The Arrangements Committee is to be congratulated for its faultless organization, which led to an enjoyable as well as a technically valuable symposium. We are particularly grateful to our host, the United States Department of Commerce—National Bureau of Standards. Dr. J. E. Snell, Director of the Center for Fire Research, and Dr. J. W. Lyons, Director of the National Engineering Laboratory, focused our efforts with their stirring remarks. Ms. S. Cherry, Ms. D. Cramer, and other members of the excellent staff at the Center for Fire Research provided invaluable support. The National Research Council of Canada kindly prepared a book of abstracts for each attendee. The Publications Committee furnished the editors with expert advice for over a year. Mr. W. Begell and Ms. F. Padgett at Hemisphere Publishing Corporation have been most cooperative. We especially appreciate assistance from Prof. R. B. Williamson and support from the College of Engineering at the University of California-Berkeley.

It was not possible at this first symposium to follow each chapter with printed comments. All the fire research related journals have invited submission of discussions related to these presentations. At the second symposium the session areas will be redefined. The chairs of the committees for the second symposium, planned for Tokyo, Japan in June 1988, have been appointed: Arrangements—Prof. T. Hirano; Publications—T. Wakamatsu; and Program—Dr. P. H. Thomas. It is intended that the proceedings of these symposia provide compendia of current progress in fire research.

Berkeley, California
November 1985

Cecile E. Grant
Patrick J. Pagni
International Association for Fire Safety Science

At this symposium, a new international association was founded. The study of fire and the solutions to the problems it presents are multidisciplinary involving many professions and sciences. Physicists, chemists, statisticians, architects, actuaries, and many kinds of engineers and practitioners are all to be found working in the various fire research laboratories and organizations concerned with fire safety matters. Until this First International Symposium on Fire Safety Science, there did not exist any organization that provided a forum for them to regularly assemble on an international basis. Multinational work is a major feature of fire safety because similar problems arise internationally from comparisons between old and modern materials, configurations, and energy sources. In addition, the fire science personnel in most countries are few and, to achieve progress, we must collaborate with our peers in other countries.

Fire presents us with several unsolved problems. Some, like turbulence, are problems in basic physics; some, like the flammability of nonhomogeneous building materials, present engineering problems of considerable complexity. And most present questions of priority, societal responsibility, and cost. Fire problems are not solved only by applications of science. We are still relying heavily on law and regulations. Fire engineering is becoming established as a professional discipline; fire science is entering into higher education. The International Association for Fire Safety Science perceives its role to lie at the scientific bases for these developments. It will seek to cooperate with existing bodies, both concerned with application or with the sciences that are fundamental to our interests in fire. It will seek to raise standards, to encourage and stimulate scientists to address fire problems, to provide the necessary scientific foundation and to encourage applications aimed at reducing life and property loss.

The registrants at this first symposium are the charter members of the International Association for Fire Safety Science. An organizing committee was established at a business meeting on October 9, 1985. The members of this committee are: Dr. P. H. Thomas, UK, chair; Prof. R. W. Fitzgerald, USA; Dr. R. Friedman, USA; Dr. T. Z. Harmathy, Canada; Prof. T. Hirano, Japan; Prof. S. Horiuchi, Japan; Prof. K. Kawagoe, Japan; Dr. M. Kersken-Bradley, FRG; Mr. E. Nelson, USA; Prof. P. J. Pagni, USA; Prof. O. Pettersson, Sweden; Dr. J. G. Quintiere, USA; Prof. D. J. Rasbash, UK; Dr. P. G. Seeger, FRG; Dr. J. E. Snel, USA; Prof. Y. Uehara, Japan; Dr. J. Unoki, Japan; and Prof. R. B. Williamson, USA. The committee met on October 11, 1985 and elected the following association officers: Dr. P. H. Thomas, UK, chair; Dr. R. Friedman, USA, vice-chair; Prof. K. Kawagoe, Japan, vice-chair; Prof. O. Pettersson, Sweden, vice-chair; Prof. T. Hirano, Japan, secretary; and Dr. J. G. Quintiere, USA, treasurer. Finance and constitution subcommittees were also formed. The organizing committee will add to its membership as needed. The Japanese Association for Fire Science and Engineering will host the Second International Symposium on Fire Safety Science which will be held at Tokyo, Japan in June 1988. Please address inquiries about the association or the second symposium to the association officers: Dr. Philip H. Thomas, Fire Research Station, Borehamwood, Herts. WD 2BL, UK; Prof. Toshisuke Hirano, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan; Dr. James G. Quintiere, Center for Fire Research, National Bureau of Standards, Gaithersburg, MD 20899, USA.
Professor Takashi Handa
October 10, 1923–September 14, 1985

The fire research community is greatly saddened by the recent passing of Professor Takashi Handa of the Science University of Tokyo. He was a founder and dedicated supporter of fire research. He actively pursued international scientific exchange and collaboration. Many of us fondly recall his gracious hospitality to scientists visiting Japan.

He began his illustrious research career in the Applied Chemistry Department of Tokyo University in 1945. In 1962, he became Associate Professor of Physical Chemistry at Wayne State University in Detroit, Michigan. His long association with the Science University of Tokyo began in 1964. In 1966, he was appointed Professor there in the Department of Science. His many honors include the Mainichi Newspaper Company Award in 1974. He became the first Director of the Center for Fire Science and Technology of the Science University of Tokyo in 1981.

Professor Handa encouraged international progress in fire research by initiating a visiting lectureship in Fire Science at the University, by his leadership role in the United States–Japan Natural Resources Panel on Fire Research and Safety and by founding the new English-language Japanese journal, *Fire Science and Technology*. His innovative use of computer modeling for fire design and fire investigation is an example to us all on the benefits of these powerful new tools which he helped to develop.

We were looking forward to his chairing the Detection Session at this symposium. We deeply regret that he was not able to do so. He is missed.
Symposium Committees

ARRANGEMENTS COMMITTEE

Dr. James G. Quintiere (Chair)
Center for Fire Research
National Bureau of Standards

Dr. Tibor Z. Harmathy
Division of Building Research
National Research Council of Canada

Mr. Harold E. Nelson
Center for Fire Research
National Bureau of Standards

PUBLICATIONS COMMITTEE

Prof. Patrick J. Pagni (Chair)
Mechanical Engineering Department
University of California, Berkeley

Prof. Toshisuke Hirano
Department of Reaction Chemistry
University of Tokyo

Dr. Paul G. Seeger
Forschungsstelle für Brandschutztechnik
Universität Karlsruhe (TH)

Prof. R. Brady Williamson
Civil Engineering Department
University of California, Berkeley

PROGRAM COMMITTEE

Dr. Philip H. Thomas (Chair)
Fire Research Station
Building Research Establishment

Dr. Raymond Friedman
Factory Mutual Research Corporation

Prof. Kunio Kawagoe
Science University of Tokyo

Prof. David J. Rasbash
Unit of Fire Safety Engineering
University of Edinburgh
Contents

Preface iii
International Association for Fire Safety Science iv
In Memoriam v
Symposium Committees vi

1985 Howard W. Emmons Invited Lecture

Fluid Dynamic Aspects of Room Fires
 E. E. Zukoski 1

Fire Physics

The Needed Fire Science
 H. W. Emmons 33

Flame Spread over Thin Layers of Crude Oil Sludge

Flow Assisted Flame Spread over Thermally Thin Fuels
 H. T. Loh and A. C. Fernandez-Pello 65

Upward Turbulent Flame Spread
 K. Saito, J. G. Quintiere, and F. A. Williams 75

Thermal Modeling of Upward Wall Flame Spread
 Y. Hasemi 87

Effect of Sample Orientation on Piloted Ignition and Flame Spread
 A. Atreya, C. Carpentier, and M. Harkleroad 97

Thermal Response of Compartment Boundaries to Fire
 J. R. Mehaffey and T. Z. Harmathy 111

Fully Developed Compartment Fires: The Effect of Thermal Inertia of Bounding Walls on the Thermal Exposure
 B. Bøhm 119

Full Scale Experiments for Determining the Burning Conditions to Be Applied to Toxicity Tests
 T. Tanaka, I. Nakaya, and M. Yoshida 129

Temperature Correlations for Forced-Ventilated Compartment Fires
 K. L. Foote, P. J. Pagni, and N. J. Alvares 139
A Contribution for the Investigation of Natural Fires in Large Compartments
 E. Hagen and A. Haksever 149

Some Field Model Validation Studies
 G. Cox, S. Kumar, and N. C. Markatos 159

Turbulent Buoyant Flow and Pressure Variations around an Aircraft Fuselage in a Cross Wind near the Ground
 H. S. Kou, K. T. Yang, and J. R. Lloyd 173

Conditionally-Sampled Estimates of Turbulent Scalar Flux in a Simulated Fire
 N. L. Crauford, K. N. C. Bray, and J. B. Moss 185

A Method for Calculating the Configuration Factor between a Flame and a Receiving Target for a Wide Range of Flame Geometries Relevant to Large Scale Fires
 G. Hankinson 197

Prediction of the Heat Release Rate of Wood
 W. J. Parker 207

Some Critical Discussions on Flash and Fire Points of Liquid Fuels
 H. Ishida and A. Iwama 217

Structural Behavior

Structural Fire Behaviour—Development Trends
 O. Pettersson 229

Heat Conduction in Insulated Metal Roof Decks during Fire: A Computational Approach
 D. Brein and P. G. Seeger 249

Measured and Predicted Behaviour of Steel Beams and Columns in Fire
 Y. Anderberg, N. E. Forsén, and B. Aasen 259

Structural Behaviour of Steel Frame in Building Fire
 K. Nakamura, K. Shinoda, M. Hirota, and K. Kawagoe 271

Effects of Biaxial Loading on the High Temperature Behaviour of Concrete
 K. Kordina, C. Ehm, and U. Schneider 281

Influence of Restraint on Fire Performance of Reinforced Concrete Columns
 T. T. Lie and T. D. Lin 291

Principles for Calculation of Load-Bearing and Deformation Behaviour of Composite Structural Elements under Fire Action
 K. Rudolph, E. Richter, R. Hass and U. Quast 301
CONTENTS

Numerical Simulations of Fire Resistance Tests on Steel and Composite Structural Elements or Frames
 J. B. Schleich, J. C. Dotreppe, and J. M. Franssen 311

Contribution to Fire Resistance from Building Panels
 B. J. Norén and B. A.-L. Östman 325

Reliability-Based Design of Structural Members for Nuclear Power Plants
 U. Schneider and D. Hosser 337

Fire Chemistry

Some Unresolved Fire Chemistry Problems
 R. Friedman 349

Spatial Variation of Soot Volume Fractions in Pool Fire Diffusion Flames
 S. Bard and P. J. Pagni 361

The Involvement of Oxygen in the Primary Decomposition Stage of Polymer Combustion
 C. F. Cullis 371

Oxidative Pyrolysis of Polymers before Flaming Ignition
 A. Baignée and F. R. S. Clark 381

Heat of Gasification for Pyrolysis of Charring Materials
 M. Sibulkin 391

A Combustibility Study of Gaseous Pyrolysates Produced by Polyester/Cotton Blends
 M. Day, T. Suprunchuk, and D. M. Wiles 401

TGA/APCI/MS/MS, A New Technique for the Study of Pyrolysis and Combustion Products
 Y. Tsuchiya 411

Halogen-Free Flame-Retardant Thermoplastic Polyurethanes
 D. R. Hall, M. M. Hirschler, and C. M. Yavornitzky 421

Major Species Production by Solid Fuels in a Two Layer Compartment Fire Environment
 C. L. Beyler 431

The Formation of Carbon Monoxide from Diffusion Flames
 S. Lomax and R. F. Simmons 441

Scale Effects on Fire Properties of Materials
 A. Tewarson and J. S. Newman 451
Critical Ignition Temperatures of Wood Sawdusts

T. Kotoyori 463

Influence of the Thickness on the Thermal Degradation of PMMA

C. Vovelle, R. Akrich, J.-L. Delfau, and S. Gresillaud 473

Differences in PMMA Degradation Characteristics and Their Effects on Its Fire Properties

T. Kashiwagi, A. Inaba, and J. E. Brown 483

People-Fire Interactions

Methods of Design for Means of Egress: Towards a Quantitative Comparison of National Code Requirements

E. Kendik 497

Leadership and Group Formation in High-Rise Building Evacuations

B. K. Jones and J. A. Hewitt 513

A Case Study of Fire and Evacuation in a Multi-Purpose Office Building, Osaka, Japan

S. Horiuchi, Y. Murozaki, and A. Hokugo 523

Movement of People on Stairs during a Fire Evacuation Drill—Japanese Experience in a Highrise Office Building

M. Kagawa, S. Kose, and Y. Morishita 533

Computer Simulations for Total Firesafety Design of the New Japanese Sumo Wrestling Headquarters and Stadium (Kokugikan)

H. Sato and T. Ouchi 541

Evacuating Schools on Fire

A. F. Van Bogaert 551

Perceived Time Available: The Margin of Safety in Fires

J. D. Sime 561

Initial Reactions to a Fire from a Simple Robotic Device

J. J. Breaux 571

Towards an Integrated Egress/Evacuation Model Using an Open Systems Approach

H. A. MacLennan 581

Translation of Research into Practice

Translation of Research into Practice

J. J. Keough 593
Translation of Research into Practice: Building Design
 M. Law 603

Reliability Study on the Lawrence Livermore National Laboratory Water-Supply System
 H. K. Hasegawa and H. E. Lambert 611

Decision Analysis for Risk Management of Firesafety Hazards
 F. Noonan 621

Evaluation of the Risk Problem and the Selection of the Optimum Risk Management Solution
 C. Van Anne 627

Simple and Not So Simple Models for Compartment Fires
 M. R. Curtat and X. E. Bodart 637

Assessment of Extent and Degree of Thermal Damage to Polymeric Materials in the Three Mile Island Unit 2 Reactor Building
 N. J. Alvares 647

Exponential Model of Fire Growth
 G. Ramachandran 657

The Use of a Zone Model in Fire Engineering Application
 S. Bengtson and B. Hägglund 667

Detection

Overview on Fire Detection in Japan
 A. Watanabe, H. Sasaki, and J. Unoki 679

Attenuation of Smoke Detector Alarm Signals in Residential Buildings
 R. E. Halliwell and M. A. Sultan 689

Detection of Smoldering Fire in Electrical Equipment with High Internal Air Flow
 H. Hotta and S. Horiuchi 699

Global Soot Growth Model
 G. W. Mulholland 709

Numerical Simulations of Smoke Movement and Coagulation
 Y. Yamauchi 719

Dynamic Performance of Pneumatic Tube Type Heat Sensitive Fire Detectors
 H. O. Luck and N. Deffe 729

Installation and Reliability of a Free Smoke Detector
 S. Hygge 739
Correlation Filters for Automatic Fire Detection Systems
H. O. Luck 749

Specialized Fire Problems

Historical Aspects of Fires, after Impact, in Vehicles of War
W. Johnson 761

The Thermal Response of Aircraft Cabin Ceiling Materials during a Post-Crash, External Fuel-Spill, Fire Scenario
L. Y. Cooper 775

Evaluation of Aircraft Interior Panels under Full-Scale Cabin Fire Test Conditions
C. P. Sarkos and R. G. Hill 789

Preliminary Test for Full Scale Compartment Fire Test (Lubricant Oil Fire Test: Part 1)
T. Tanaka, Y. Kabasawa, Y. Soutome, and M. Fujizuka 799

Full Scale Compartment Fire Test with Lubricant Oil (Lubricant Oil Fire Test: Part 2)
M. Fujizuka, Y. Kabasawa, Y. Soutome, and J. Morita 809

Fire Safety Research and Measures in Schools in Belgium
A. F. Van Bogaert 819

Fire Spread along Roofs—Some Experimental Studies
K. Ödeen 829

Evaluation of Garment Flammability Using Thermal Mannequins
Y. Uehara and M. Umezawa 839

Burning Rate of Upholstered Chairs in the Center, alongside a Wall and in the Corner of a Compartment
T. Mizuno and K. Kawagoe 849

Cable-Fire Tests under the Raised Floor of Data-Processing Installations
K. Martin 859

Spray Fire Tests with Hydraulic Fluids
G. Holmstedt and H. Persson 869

A Study on the Fire Spread Model of Wooden Buildings in Japan
Y. Namba and K. Yasuno 881

Full Scale Test of Smoke Leakage from Doors of a Highrise Apartment
O. Sugawa, I. Ogahara, K. Ozaki, H. Sato, and I. Hasegawa 891
External Radiation at a Full Scale Fire Experiment
I. Tsukagoshi and E. Itoigawa 901

Oil Pool Fire Experiment
T. Yamaguchi and K. Wakasa 911

The Behaviour of Heavy Gas and Particulate Clouds
R. J. Bettis, G. M. Makhviladze, and P. F. Nolan 919

An Event Tree Model for Estimation of Fire Outbreak Risks in Case of a Large-Scale Earthquake
H. Kaji and T. Komura 931

Statistics, Risk, and System Analysis

Towards a Systemic Approach to Fire Safety
A. N. Beard 943

The Use of Probabilistic Networks for Analysis of Smoke Spread and the Egress of People in Buildings
W.-C. T. Ling and R. B. Williamson 953

Reliability and Maintainability for Fire Protection Systems
H. D. Boyd and C. A. Locurto 963

Fire Following Earthquake
C. Scawthorn 971

CIB-Concept for Probability Based Structural Fire Safety Design
L. Twilt and A. Vrouwenvelder 981

Risk Analysis Using the Engineering Method for Building Firesafety
R. W. Fitzgerald 993

The Development and Use of the United Kingdom Home Office Fire Cover Model
G. H. Dessent and J. A. Harwood 1003

National Fire Costs—A Wasteful Past but a Better Future
T. Wilmot 1009

Investment Model of Fire Protection Equipment for Office Building
H. Nakamura 1019

Risk Management Application of Fire Risk Analysis
M. Kazarians, N. Siu, and G. Apostolakis 1029

Some Probabilistic Aspects of Fire Risk Analysis for Nuclear Power Plants
G. Apostolakis 1039
CONTENTS

A Probabilistic Method for Optimization of Fire Safety in Nuclear Power Plants

D. Hosser and W. Sprey 1047

Smoke Toxicity and Toxic Hazard

Mathematical Modeling of Toxicological Effects of Fire Gases

G. E. Hartzell, D. N. Priest, and W. G. Switzer 1059

Toxicity Testing of Fire Effluents in Japan: State of the Art Review

F. Saito and S. Yusa 1069

Thermal Decomposition of Poly(Vinyl Chloride): Kinetics of Generation and Decay of Hydrogen Chloride in Large and Small Systems and the Effect of Humidity

C. A. Bertelo, W. F. Carroll, Jr., M. M. Hirschler, and G. F. Smith 1079

Quantitative Determination of Smoke Toxicity Hazard—A Practical Approach for Current Use

R. W. Bukowski 1089

The Effects of Fire Products on Escape Capability in Primates and Human Fire Victims

D. A. Purser 1101

Toxicity of the Combustion Products from a Flexible Polyurethane Foam and Polyester Fabric Evaluated Separately and Together by the NBS Toxicity Test Method

B. C. Levin, M. Paabo, C. S. Bailey, and S. E. Harris 1111

Calculation of Smoke Movement in Building in Case of Fire

T. Matsushita, H. Fukai, and T. Terai 1123

Effects of Combustion Gases on Escape Performance of the Baboon and the Rat

H. L. Kaplan 1133

Suppression

The Extinction of Fire with Plain Water: A Review

D. J. Rasbash 1145

Investigation of Spray Patterns of Selected Sprinklers with the FMRC Drop Size Measuring System

H.-Z. You 1165

Extinguishment of Rack Storage Fires of Corrugated Cartons Using Water

J. L. Lee 1177
CONTENTS

Fire Extinguishing Time by Sprinkler
 J. Unoki 1187

Experiments and Theory in the Extinction of a Wood Crib
 S. Takahashi 1197

Analysis of Fire Suppression Effectiveness Using a Physically Based Computer Simulation
 L. M. Pietrzak and G. A. Johanson 1207

Author Index 1217
Subject Index 1220