CONFIGURATION FACTOR FOR A TRIANGULAR RADIATOR

by

MARGARET LAW
CONFIGURATION FACTOR FOR A TRIANGULAR RADIATOR

by

Margaret Law

SUMMARY

Equations for the configuration factor of an elemental receiver on a plane either parallel or perpendicular to a triangular radiating area are given. Values for isosceles triangles, useful for calculating heat transfer from flames, have been computed.

This report has not been published and should be considered as confidential advance information. No reference should be made to it in any publication without the written consent of the Director of Fire Research.
1. Introduction

This note gives equations for the configuration factor, \(\phi \), from a triangular radiator to an elemental area receiver, \(ds \), on either a parallel or perpendicular plane. Values for an isosceles triangle, useful for calculating heat transfer by radiation from flames to exposed surfaces, are given in Figs 1 and 2. The theoretical basis is given elsewhere.

2. Receiver on parallel plane.

(i) Right angled triangle

Facing right angle

\[
\phi = \frac{kA}{2 \pi \sqrt{1+k^2(1+A^2)}} \left[\tan^{-1} \frac{A}{\sqrt{1+k^2(1+A^2)}} + \tan^{-1} \frac{k^2 A}{\sqrt{1+k^2(1+A^2)}} \right]
\]

or

\[
\phi = \frac{AB}{2 \pi \sqrt{A^2+B^2(1+A^2)}} \left[\tan^{-1} \frac{A^2}{\sqrt{A^2+B^2(1+A^2)}} + \tan^{-1} \frac{B^2}{\sqrt{A^2+B^2(1+A^2)}} \right]
\]
Right angle triangle continued

\[\frac{a_1}{c} = A_1 \]
\[\frac{a_2}{c} = A_2 \]
\[\frac{b}{c} = B \]
\[\tan \lambda = k \]

Facing base

\[\phi = \frac{1}{2 \pi} \left[\frac{k A_2}{\sqrt{1+k^2 (1+A_2^2)}} \left\{ \tan^{-1} \frac{A_2}{\sqrt{1+k^2 (1+A_2^2)}} + \tan^{-1} \frac{A_1 + k^2 (A_1 + A_2)}{\sqrt{1+k^2 (1+A_2^2)}} \right\} \right. \]
\[\left. + \frac{A_1}{\sqrt{1+A_2^2}} \tan^{-1} \frac{k (A_1 + A_2)}{\sqrt{1+A_2^2}} \right] \]

or \[\phi = \frac{1}{2 \pi} \left[\frac{B A_2}{\sqrt{(A_1 + A_2)^2 + B^2 (1+A_2^2)}} \left\{ \tan^{-1} \frac{A_2 (A_1 + A_2)}{\sqrt{(A_1 + A_2)^2 + B^2 (1+A_2^2)}} \right. \right. \]
\[\left. \left. + \tan^{-1} \frac{A_1 (A_1 + A_2) + B^2}{\sqrt{(A_1 + A_2)^2 + B^2 (1+A_2^2)}} \right\} + \frac{A_1}{\sqrt{1+A_2^2}} \tan^{-1} \frac{B}{\sqrt{1+A_2^2}} \right] \]

(ii) Acute angled triangle

\[\tan \theta = K \]
\[\beta = \frac{KAB}{2\pi \sqrt{(A\sqrt{1+K^2-B})^2 + K^2B^2(1+A^2)}} \left[\tan^{-1} \frac{A(A + 1 + K^2 - B)}{\sqrt{(A\sqrt{1+K^2-B})^2 + K^2B^2(1+A^2)}} + \frac{\tan^{-1} B(B \sqrt{1+K^2-A})}{\sqrt{(A\sqrt{1+K^2-B})^2 + K^2B^2(1+A^2)}} \right] \]

By employing the additive property of configuration factors, equation 4 can be used for any triangle and any position of the receiver.

(iii) Isosceles triangle

The maximum configuration factor at a given distance is for a receiver opposite the centre of gravity.

\[\frac{h}{c} = h \]
\[\frac{d}{c} = D \]
\[\frac{h}{d} = f \]

From equation 3

\[\beta = \frac{1}{\pi} \left[\frac{fD}{\sqrt{f^2D^2+9}} \tan^{-1} \frac{1.5D}{\sqrt{f^2D^2+9}} + \frac{fD}{\sqrt{f^2(D^2+9) + 2.25}} \left\{ \tan^{-1} \frac{2f^2D}{\sqrt{f^2(D^2+9) + 2.25}} + \frac{\tan^{-1} D(f^2+0.75)}{\sqrt{f^2(D^2+9) + 2.25}} \right\} \right] \]

or

\[\beta = \frac{1}{\pi} \left[\frac{H}{\sqrt{H^2+9}} \tan^{-1} \frac{1.5D}{\sqrt{H^2+9}} + \frac{HD}{\sqrt{9H^2+H^2D^2+2.25}} \left\{ \tan^{-1} \frac{2H^2}{\sqrt{9H^2+H^2D^2+2.25}} + \frac{\tan^{-1} H^2+0.75D^2}{\sqrt{9H^2+H^2D^2+2.25}} \right\} \right] \]

The solution of equation 5 is shown in Fig. 1 for different values of \(f = \frac{h}{d} \)
3. Receiver on perpendicular plane

Some of the solutions have already been given by Hamilton and Morgan; they are reproduced here for the sake of completeness.

(i) Right angle triangle

Values are given by Hamilton and Morgan

\[
\begin{align*}
\frac{a}{c} &= A \\
\frac{b}{c} &= B \\
\tan \lambda &= k
\end{align*}
\]

Facing right angle

\[
\phi = \frac{1}{2\pi} \left[\tan^{-1} A - \frac{1}{\sqrt{1+k^2(1+A^2)}} \left\{ \tan^{-1} \frac{A}{\sqrt{1+k^2(1+A^2)}} + \tan^{-1} \frac{k^2 A}{\sqrt{1+k^2(1+A^2)}} \right\} \right]
\]

or

\[
\phi = \frac{1}{2\pi} \left[\tan^{-1} A - \frac{A}{\sqrt{A^2+B^2(1+A^2)}} \left\{ \tan^{-1} \frac{A^2}{\sqrt{A^2+B^2(1+A^2)}} + \tan^{-1} \frac{B^2}{\sqrt{A^2+B^2(1+A^2)}} \right\} \right]
\]

Values are given by Hamilton and Morgan

Facing acute angle

\[
\phi = \frac{1}{2\pi} \left[\tan^{-1} A - \frac{1}{\sqrt{1+k^2}} \right]
\]

or

\[
\phi = \frac{1}{2\pi} \left[\tan^{-1} A - \frac{A}{\sqrt{A^2+B^2}} \tan^{-1} \frac{1}{\sqrt{A^2+B^2}} \right]
\]

Values are given by Hamilton and Morgan
Right angle triangle continued

Facing base

\[\beta = \frac{1}{2 \pi} \left[\tan^{-1} A_1 + \tan^{-1} A_2 - \frac{1}{\sqrt{1+k^2(1+A_2^2)}} \left\{ \tan^{-1} A_2 \right\} + \tan^{-1} \frac{k^2(A_1+A_2) + A_1}{\sqrt{1+k^2(1+A_2^2)}} \left\{ \tan^{-1} \frac{A_2(A_1+A_2)}{(A_1^2+A_2^2) + B^2(1+A_2^2)} \right\} \right] \]

or

\[\beta = \frac{1}{2 \pi} \left[\tan^{-1} A_1 + \tan^{-1} A_2 - \frac{A_1 + A_2}{\sqrt{(A_1+A_2)^2+B^2(1+A_2^2)}} \left\{ \tan^{-1} \frac{A_2(A_1+A_2)}{(A_1^2+A_2^2) + B^2(1+A_2^2)} \right\} + \tan^{-1} \frac{B^2+A_1(A_1+A_2)}{\sqrt{(A_1^2+A_2^2) + B^2(1+A_2^2)}} \right] \]
(ii) Acute angled triangle

\[
\phi = \frac{1}{2\pi} \left[\tan^{-1} \frac{a}{c} - \frac{1}{\sqrt{1+K^2}} \tan^{-1} \frac{b}{c} - \frac{Z}{\sqrt{Z^2+2B^2K^2(1+A^2)}} \right] \\
\tan \Theta = K
\]

where \(Z = A \sqrt{1+K^2} - B \)

(iii) Isosceles triangle

The maximum configuration factor at a given distance is for a receiver opposite the centre of the base.

\[
d = D \\
h = H \\
\frac{h}{d} = f
\]

From equation (6)

\[
\phi = \frac{1}{\pi} \left[\tan^{-1} \frac{D}{2} - \frac{1}{\sqrt{1+f^2(D^2+h^2)}} \right] \left\{ \tan^{-1} \frac{O_5D}{\sqrt{1+f^2(D^2+h^2)}} + \tan^{-1} \frac{2f^2D}{\sqrt{1+f^2(D^2+h^2)}} \right\}
\]

or

\[
\phi = \frac{1}{\pi} \left[\tan^{-1} \frac{D}{2} - \frac{D}{\sqrt{D^2+H^2(D^2+h^2)}} \right] \left\{ \tan^{-1} \frac{O_5D^2}{\sqrt{D^2+H^2(D^2+h^2)}} + \tan^{-1} \frac{2H^2}{\sqrt{D^2+H^2(D^2+h^2)}} \right\}
\]

The solution of equation (10) is shown in Fig. 2 for different values of \(f = \frac{h}{d} \)

References

FIG. 1. ISOSCELES TRIANGLE AND PARALLEL RECEIVER
(EQUATION 5)
FIG. 2. ISOSCELES TRIANGLE AND PERPENDICULAR RECEIVER (EQUATION 10)