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Abstract 
 
 

In numerical analysis for the fire mathematical models, the numerical 
spurious oscillations appear in the results which are computed by most of the 
traditional numerical methods such as the first order accuracy upwind 
difference scheme and the third order accuracy upwind difference scheme. 
The new numerical scheme is applied to PDEs with convection terms in the 
fire mathematical models. This scheme is based on switching high accurate 
interpolation of the profile to one satisfying the TVD condition for space 
variable over a local area when the numerical spurious oscillations is 
appeared. 
In this paper, we propose the new scheme, TVDCIP(Total Variation 
Diminishing Cubic Interpolated Propagation), that consists of the spatial 
interpolation and the  mathematical algorithm for switching scheme with 
high order accuracy. TVDCIP method is applied to solve the nonlinear 
hyperbolic partial differential equations numerically such as Navier-Stoke’s 
type equations. 

 
 

1. Introduction* 

Most of fire phenomena in fire science 
and technology are modeled numerically 
by the partial difference equations (PDEs) 
in space and time. 

In computational fluid dynamics, the 
convection equations are formulated as one 
of the partial differential equations. 
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Normally, the convection terms in these 
equations cause the numerical spurious 
oscillations. 

In the finite difference method, it is 
necessary to obtain the high accuracy 
numerical results of PDEs. However, in the 
high-order accuracy scheme, the numerical 
spurious oscillations might be appeared 
and influence the numerical stability in the 
system. In order to clear the numerical 
spurious oscillations and the numerical 
viscosities of the computational  results, 
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we introduce the following linear 
convection equation, 
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where c  is a nonnegative constant.  
Figure 1 shows the numerical results 

by the first-order accuracy upwind 
difference scheme, the second-order 
accuracy central difference scheme and the 
third-order accuracy upwind difference 
scheme. 

 
Figure 1. The numerical solutions by the various 

difference schemes and the exact solution. 
 
In Figure 1, at the first-order accuracy 

upwind difference scheme, numerical 
viscosities are strongly appeared and 
numerical oscillations are not. The effect 
of numerical viscosities will be reduced by 
the high-order accuracy difference scheme. 
On the other hand, the numerical 
oscillations are appeared to the second-
order accuracy central difference scheme 
and the third-order accuracy upwind 
difference scheme in these results. The 
relationship between the reduction of   
numerical viscosities and the suppression 
of numerical spurious oscillations is 
exclusive. The Total Variation 
Diminishing (TVD) method [1] will be 
cleared above the problems. The TVD 
method has successfully obtained the 
adequate results for the compressible 
viscous fluid dynamics problems in fire 
phenomena. It is necessary to keep the 
conservation form mathematically. 

In this paper, we propose the new 
method (TVDCIP method) that has no any 

restrictions to the conservation form. 
However it is necessary to take account of 
the flow direction. Until now, the CIP 
method [2] has been presented, and applied 
to many problems [3,4,5]. In the CIP 
method, the spatial profile is described by 
third-order Hermite interpolation in the 
convection terms and updated by shifting 
the profiles according to the local exact 
solution. The CIP method for non-
conservative form has been developed, and 
the computed results have been 
comparable good agreement with the 
conservative schemes such as the TVD 
method. 

 
 

2. Numerical Scheme 

2.1 mCIP method 
The mCIP method is defined as follows 

and the mathematical algorithm of the 
mCIP method [6] is as follows. 

 
2.1.1 Definition of mCIP method 

The mCIP method is defined by 
switching the cubic interpolation of the 
profile having extremum to the first-order 
accuracy for space variable over a local 
area in the CIP method. 

 
The mCIP method is introduced to the 

following interpolating function, 
jjjjjjjj dxxcxxbxxaxF +−+−+−= )()()()( 23

where jjj cba ,, and jd  are defined as 
follows respectively. 
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2.1.2 Flow Diagram of the mCIP  
method 

Step 0 : Set each parameters. 
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Step 2 : 
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Step 3-1 : extremum * bound1  0 and 
     extremum * bound2  0 
Step 3-2 : bound1* bound2  0 

 

 
 

Figure 2. Flow diagram of the mCIP method. 
 
2.2 TVDCIP method 

The TVDCIP method is defined and 
the mathematical algorithm for the 
TVDCIP method is follows. 

 
2.2.1 Definition of mCIP method 

The TVDCIP method is defined by 
switching the cubic interpolation of the 
profile having extremum to one satisfying 
the TVD condition for space variable over 
a local area in the CIP method. 

 
2.2.2 Flow Diagram of the TVDCIP 
method 

The flow diagram of the TVDCIP 
method is the same as that for mCIP if we 
change the first-order accuracy 
interpolation to the third-order accuracy 
satisfying TVD condition in Figure 2. 

  
3. Numerical Experiments 

There are the numerical experiments 
for the one-dimensional nonlinear 
hyperbolic Euler equations called the 
compressible viscous fluid flow equation 
in Case 1, and the two-dimensional linear 
convection equation in Case 2 as follows. 
 
Case 1 
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(Initial conditions) 
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Case 2 
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4. Computational Results 

Case 1 
The computational results of the 

density, the velocity and the pressure for 
Case 1 are obtained with Δx=1.0 and 
Δt=0.1 at 400 steps by the TVDCIP 
method, the first-order accuracy upwind 
difference method and the third-order 
accuracy upwind difference method, 
respectively as shown in Figure 3-5. 
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Figure 3. Numerical results of density 

 
Figure 4. Numerical results of velocity 

 
Figure 5. Numerical results of pressure 

 
Case 2 
The computational results and the exact 

solution for Case 2 are obtained with 
Δx=0.1 and Δt=0.01 at 200 steps by the 
TVDCIP method, the mCIP method, the 
first-order accuracy upwind difference 
method and the third-order accuracy 
upwind difference method, respectively as 
shown in Figure 6-9. The counter-maps of 
the values of function )2,,( yxf  on the 
xy-plane are shown in Figures 6, 7, 8, 9, 
and 10. 

 

 
Figure 6. Analytical solution 

 
Figure 7. Numerical results by TVDCIP method 

 
Figure 8. Numerical results by mCIP method 

 

 
Figure 9. Numerical results by 

1st order difference method 



 
Figure 10. Numerical results by 

3rd order difference method 
 
 

5. Discussions 

In Case 1, the computational results in 
Figure 3, 4 and 5 are quite difference 
among the scheme with the numerical 
viscosities, and the numerical spurious 
oscillations. The numerical spurious 
oscillations are only appeared to the third-
order accuracy upwind difference method. 
On the other hand, the numerical 
viscosities are only appeared to the first-
order accuracy difference method. The 
mCIP method and the TVDCIP method are 
almost no appeared both the numerical 
spurious oscillations and the numerical 
viscosities.  

In Case 2, the similar computational 
results are obtained as Case 1. There are 
quite differences between the analytical 
results in Figure 6 and the computational 
results by first-order accuracy difference 
method in Figure 9, and also quite 
differences between the analytical results 
in Figure 6 and the computational results 
by third-order accuracy upwind difference 
method in Figure 10.  

The numerical viscosities are clearly 
appeared in Figure 9, and the numerical 
spurious oscillations are also clearly 
appeared in Figure 10. On the other hand, 
the computational results by mCIP method 
and TVDCIP method in Figure 7 and 8 are 

almost agreed with the analytical results in 
Figure 6. 

In above mentions, the TVDCIP 
method and the mCIP method might be 
good agreement for the fire simulation. 

 
 

6. Conclusion 

The TVDCIP method and the mCIP 
method have the good results compared 
with some traditional methods such as the 
first-order accuracy upwind difference 
method and third-order accuracy upwind 
difference method that are used in fire 
simulations. By numerical experiments, 
these methods are useful for numerical 
analysis for not only the non-linear 
hyperbolic partial differential equations but 
also 2-dimensional linear convection 
equation. The higher-dimensional 
problems like the Navier-Stokes type 
equations for the fire problem are applied 
in the same way. 

 
 

References 

1. A. Harten, High resolution schemes for 
hyperbolic conservation laws, Journal 
of Computational Physics, 49, 1983, 
357. 

2. H.Takewaki, A.Nishiguchi and T.Yabe, 
Cubic Interpolated Pseudoparticle 
Method(CIP) for Solving Hyperbolic 
Type Equations, Journal of 
Computational Physics, 61, 1985, 261. 

3. T.Yabe, Multi-Dimensional  
Simulation of Laser-Induced 
Evaporation Dynamics, Review of 
Laser Engineering, 20,  1992, 691. 

4. T.Yabe and F. Xiao, Description of 
Complex and Sharp Interface During 
Shock Wave Interaction with Liquid 
Drop, Journal of the Physical Society 
of Japan, 62 ,1993, 2537. 



5. T.Yabe, T.Aoki, M.Tajima, F.Xiao, 
S.Sasaki, Y.Abe and J.Watanabe, 
Possible explanation of the secondary 
flash and strong flare on IR lightcurves 
upon impact of Shoemaker-Levy 9, 
Geophysical Research Letters, 22, 
1995, 2429. 

6. K.Yoshida, The difference method of 
using monotone interpolation 
approximation, Master’s thesis of  
Tokyo university of science, 2003. 




