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ABSTRACT

The non-diffusion models of the solid-phase combustion wave accompanied
by stresses and deformations (which are able to affect the chemical reaction
course and the regimes of the front propagation) are presented in this paper. It
was shown that two solutions exist at least in the coherent nonlinear models, this
are subsonic and supersonic solutions. The influence of the thermal and
concentration stresses and the relaxation time of heat flux on the characteristics
of the front was examined here. The solution was carried out by the method of
joint asymptotical expansion and numerically.

NOMENCLATIJRE

t time
x,x' space coordinate
vn rate ofthe chemical reaction wave

T, To,Tb temperature, ( initial, burning )
y part of reaction product
q heat flux
cr stress
e strain
u displacement
c£ heat capacity at the constant strain
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p density
<I> heat realise function
k o preexponent
IT work ofthe defonnation forces
E activation energy
R gas constant
Qo heat realise during the chemical reaction
w specific volume
J.Lo molecular weight
AT thermal conductivity coefficient
8..r thenna! diffusivity coefficient
aM ~ aT coefficients of the concentration and heat expansion
K coefficient ofthe isothermal volume compression
k • sensitivity coefficient of the chemical reaction rate to the

mechanical action
Jv,Jl Lamer's coefficients

t r relaxation time of the heat flux

INTRODUCTION

It is known that the all physical chemical processes in solid are interrelate. So,
the change of temperature field leads to the advent of the thennal stresses. The
relaxation of stresses occurs in the differ channel. This are the change of the
specific volume ofbody (defonnations), the heat release and the destruction. The
similar processes accompany any solid-phase chemical reaction proceeding with
the release and the absorption of the heat and are the reason of the differ regimes
ofthe front propagation.

The known models of solid-phase combustion ignore, as a rule, the
interrelation of differ physical phenomena, that does not allow to interpret
unambiguously the various experimental facts which do not correspond to
habitual guides. The high rate processes of the polymerization in solid phase, the
various type of reactions at. the conditions of high pressure and deformations
(there are non-diffusion reactions and processes limited by diffusion at such
conditions), low temperature radical reactions in polycrystalline matrices are the
examples of such processes. It can be said in some cases on two mechanisms of
the acceleration of the solid phase reactions - heat mechanism (due to the
temperature rise) and deformation mechanism ( due to losses of the free energy
of the system), that should lead to the various regimes of the solid-phase
combustion. The greatest amount of paper is devoted to low temperature radical
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reactions [1-5]. The influence of the destruction in the reaction zone on the
initiation conditions of reactions was taken into account in [1] with the formal
substitution the customary Arrenius source of the heat release by source which is
differ from zero only at the critical temperature gradient corresponding to the
destruction condition. The model of other type was suggested in [2]. The heat
release rate is assumed to depend obviously on the temperature gradient, on the
concentration ofreactive centres. The severe influence ofthe heat capacity on the
thermal wave propagation at the low temperature was indicated here. It was
claimed in [3] that the regimes with high rate exist in autowave model with the
source of type [1] only due to presence· in medium of the effects of the heat
relaxation. The heat model of the combustion with additional nonchemical heat
release [4] may be also interpreted as one of possible models of the reactions
with the destruction in the front The explicit destruction waves or the stresses
wave do not consider in this paper. The model of process of the propagation of
the thermal decomposition front was investigated in [5] with take into account
the finite relaxation time and the stresses wave following the heat wave .It was
detected there also that the rate of such processes may be as more so less then
the sound rate in solid. Let us shown that the interrelation of the heat and
deformation processes is the reason of the nonuniquity of the regime of the
stationary front propagation for exothermal reactions. But the effect of the
coherence (the influence of stresses on the chemical reaction) absent in this
model, therefore such conclusion ofauthor [5] is incorrect.

THE BASIC CORRELATIONS

In present paper, we analyze the model including the energy equation in form
ofgeneralized thennal conductivity equation

aT . a{a }csPo- = -dlvq + Qoko<I>(y, T, II) - T - Ekk -(Kco) ,at aT aT

the motion equations

and the equation for the change of conversion extend y (the part of the reaction
product)
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where K = A+2Jl/3 is the coefficient of the isothermal volume compression, A, J.!
are Lamer's coefficients; skit is the first invariant of the defonnation tensor which
is equal to the change of the specific volume w:

at the absence the all stresses, where a BA =(aB - (lA) CAO' (lB' a A are the

coefficients of the concentration expansion of product and reagent; C AO is the
part of the reagent in nondefonned substance, I1 is the work of deformation
forces, k. is the sensitivity coefficient of the chemical reaction rate to the
mechanical actions.

The employment of the linear Fourier low leads to the usual thermal
conductivity equation with the additional items due to connection between the
thermal conductivity process and the deformation of the substance. If we use the
nonlinear correlations [6]

Which take into consideration the finite relaxation time of the heat flux, we
receive the generalized hyperbolic thennal conductivity equation.

The stresses connect with deformations by generalized Hooke low

[
V - v ]

(j .. =2JlE .. + AE kk - 0 0 ..
u v V 9

o
(1)

where b, - is Kronecker symbol. In principle, the similar correlations have a

place for stresses and deformations of any type, therefore the employment (1)
does not belittle the community ofthe reasoning. We have

cr 12 = cr 13 = (j 23 = 0,

and the unique motion equation cr 11,J: = P OlU1/ot2 in the simplest case of one­

axis deformation. To move up to the coordinate system connecting with the
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reaction front we will make the replacement the variable x on x. We accept the
following boundary conditions

x' ~ 00: aT/ax = 0

x'~-oo: T=To , y=O, u=au/ox=o

for the nonstationary combustion model. The question of the existence of the
automodel solutions is the greatest interest for us. The corresponding automodel
problems are received with the help ofthe formal equation the time derivatives to
zero in the equations system which are written in the variables x', 1. .

TIIE EXAMPLES OF THE SPECIAL MODElS

1. If the temperature deformations are the basic in the system, the problem
may be reduced to the more simple mathematical formulation. The stresses and
defonnations follow the change of the temperature field in this case, and the
model ofthe stationary wave of the solid-phase combustion take a form

a d
2

T _ v dT [1 + (3Ka. T Y T 1 ] _ Qoko <I>(y T) = 0 (2)
T dx' 2 a dx' A, + 2 J.1 C.P 1 - M:1 C.P , ,

- v dy + k <I> (y T) = 0 (3)• dx' 0 , ,

where

<D(y, T) = (1- y)exp{-(E - flo k. (3Ka.T? M
2

2 (T - TOY) /RT}, (4)
p A+2fl 1-M /1.

x~ 00: aT/Ox =O,y~ 1; x~ -00: T - ToS = 0, (5)

M = v./{(A + 2 fl )/ P)1/2 is the ratio of the front rate to the sound rate in the

solid (it is the analogy of Mach-number). It had been received in [8] at the
analysis of linearized model (when we assumed T ~ T. in the square bracket of
(2)) the unique value of the front rate_ v D exists in the model at the condition M
« 1. The value of v n increase sharply with regard to the dependence of the
chemical reaction rate on the work of the deformation forces:
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(6)

where

(3Ka T Y Tb M 2

g = ()2 < < 1,
A + 2 J.1 c .P 1 - M 2

v .0 is the rate of the stationary front corresponding to the pure heat model. The
nonuniquity solution appears at the attempt to connect the temperature in
combustion front with the conditions of the stationary propagation of the cracks
system in this case. In general case, the ununiquity ofthe solution inherent in the
properties of the equations system (2),(3).

2. The starting equation system for the case W =3aT (T - To) is differ from

the equation system of the usual coherent equation system of the thermal
elasticity by the presence the source item and the presence the nonlinearity in the
dissipative item of thermal conductivity equation. It have been assumed in
classical works that the examination may be restricted by the linearized problem

substituting T ~ To + 0 ( aT/ at) for the smaIl temperature drop and for the

slow temperature field change. The solutions of the problems on the heat shock
(they are known as the Danilovskaya's problems) are presenting in form of the
thermal elasticity wave attenuating quickly at the removing from the heating
boundary. The automodels solutions absent in such problems. Taking into
account the nonlinearity in inert thermal conductivity equation we will receive
the automodel solutions.

Really, assuming <D = 0 in (2), we have the nonlinear equation which
coincides in form with the Burgers equation [8] which is written in automodel
variables. Using the conditions (5) we find the temperature behind the front of

wave T•. The infinitely many values of rate v D which satisfy to the condition

exist. If the temperature Tsand T 0 are given the thermal mechanical autowave
runs with the rate
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(7)

Adding the thermal conductivity equation by the heat release caused by the

chemical-reaction we determine practically T. as the product temperature Tb •

3. The first integral ofthe equation system (2),(5) has a view

dT [(T T) (3KaT Y 1 T
2

-T/] Qov n -0a--v - + +--y-
Tdx' n 0 A+21.l 2c£pl-M 2 c£p ,

WId allows us to determine the temperature of the reaction products. Introducing
the designations

8 = ( 3KaTY(T100 - To)
o c .P ( A. + 2 J1 ) ,

whereTIoO = To + Qo/(c.p), 1 1 = 2(I-cr)/cr, cr = (Tloo-To)/Tloo,
we find

The equations system for the temperature and the conversion extend take a
form

; ~ --00: y~ 0,9~ 0;

S~ 00: y~ 1,9~ 9b ,

with using the first integral, where
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l; =aT x'/vn' e= (T - To)/(Tb- To),
v 2 [E] [ e (0 -I) ]r 2 = _n_ exp _0_ , fee) = exp 0 ,

ko~ RTbO 1+ a(O -1)

The solution of the problem (9) with help of joint asymptotical expansion
method leads to the expression

0'2 r {e e-1 }rl=-[Yl/2+8~ exp _0 b /

8" (j 8,,+1 1 2
(10)

for the front rate. The analysis of (8),(10) has shown that the two regimes ­
subsonic and supersonic exist in this problem, and two differ value of the
temperature Bb correspond to the rates which are more the sound rate

2 A+211 [E]r 2 > V x = r- exp _0_ ,
p RTbO

Practically, we have two supersonic combustion regimes. The low-temperature
regime is nonstable due to character of singular point (8b = 81 , y=1).The since

of such result could be understandable with help ofthe numerical examination.
The typical temperature and concentration profiles for the various regimes of

the propagation of the combustion wave are presented on the fig 1,2. The
calculation was carried out for the parameters values:

2eo =10, V x =0.01,0" = 0.9, () 0 =1

The wave propagating with subsonic rate r2~5,5xI0-4(M2~O,055) is

characterized by the product temperature 8b = 0,677 .The supersonic wave has

the rate r1
2
~ 0, 162(M2 ~ 16,2) and the'temperature which is equal to the lesser

temperature 0b = 81 ~ 1,04 from two solutions of (8) (fig. I). Selecting the 82 as

the product temperature we receive the temperature profile in the reaction zone
which reminds the detonation wave (fig. "2). The thermal mechanical wave
propagates with the rate which is equal to the reaction front r 1 • The temperature

82 may be estimated from (7)
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Unlike the detonation wave the thermomechanical wave "push" the chemical
wave. The existence of new wave are stipulated by the interrelation of heat and
defonnation processes in the front of the solid-phase chemical reaction wave.

The results of the numerical determination of the rates of the subsonic and
supersonic regimes agree well with the calculations from the formulas (8),(10).

4. Taking into account the concentration stresses and deformations, we arrive
to the problem on the propagate of the stationary front with the thermal
conductivity equation

(11)

where

Hence, the change of the heat capacity and the heat effect of the reaction connect
immediately with the stresses and deformations which are the result of the
reaction. If the reaction proceeds with the volume expansion, we have the
apparent parallel endothermic reaction (g > 0) In the opposite case, "dissipative"
heat from concentration stresses and deformations appears as the hea;t release in
the parallel reaction. Let us give the result of the asymptotical analysis of the
problem for k. = 0 :

Bab
2

+ [B(2g +y 1)Jab + 1- ByIg =0, (12)

(13)

The calculations from formulae (12),(13) shown that negative g leads to the
increase of the subsonic front rate (M < 1) and to the decrease of the values of
the supersonic wave (M > 1). Influence ofthe positive g has the opposite nature.

5. Accepting the nonlinear connection between the heat -flux and the
temperature gradient we receive following thermal conductivity equation [9]

, dT '\ , _d
2
T Q'<I>' Q' d<DvncEP-= ~T--2+ 0 +trvn 0-'

dx' dx' dx'
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where

, [ 8 0 1 ( dT )]c~ = Cf; 1+ 2 T + t r v n -, ,
1- M Tbo - To dx

A,~ = AT[I- t r v n
2

(I + Do 2 T )],
aT 1- M Tbo - To

<1>' = <1>[1- Dog 1 (T + t v dT )].
1- M 2 Tbo - To r n dx'

The equation (14) includes the all known models for the low temperature
radical reactions. Really, the dependence of the reaction rate on the work of the
deformation forces ( or on the excess of the free energy presenting in the system
[1,4 ]), the dependence of the preexponent (or the heat release of the reaction) on
the temperature [2], the influence of the temperature change on the heat capacity
of substance [5] are taken into consideration in the model obviously. The
individual items in <D' ,c~ , the change of the thermal conductivity coefficient and
the additional source item in (14) reflect the influence of effect of the heat
relaxation [3]. Unlike [4], the additional heat release has a chemical nature. One
ofthe conditions of the existence ofthe heat autowave is A;. >0.

The solution of the problem was carried out also by the method of the joint
asymptotical expansion and numerically. We have, for example,

in particular case k. =0 and at the conditions

with the exponentially small accuracy to 80 .

The equation for the product temperature 8b (with the same accuracy) does
not change. The estimation shown that the stationary front rate (for any regimes)
increases with the relaxation time t r = trkoexp (Eo/(RTbO »).

Let us make in conclusion, that the coherent equations which are analogous to
presented above have a place for the stresses and deformations of any type [10].
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Hence, we may expect the appearance of supersonic regimes and
thermomechanical autowaves at the other connections between O'ij,Sjj, w.
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Fig.!. The profiles of temperature (1) and conversion extend (2) in the
reaction zone ofsolid-phase combustion wave
- - - - - - - subsonic regime
---supersonic regime (thermomechanical wave absents)
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Fig.2. The temperature profile for the supersonic combustion wave

eo = 10,00 = 1,0' = 0.9(YI = 2/9), v/ = 0.1.
2

Vn = 1. - 0.965; 2. - 0.6433; 3. - 0.6931; 4. - 0.5780; 5. - 0.5742;
6. - 0.5735.
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