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Abstract:

In this paptr, a physical nwdel of a wall plume
pdJacent to an adiabatic wall is presented. An
analysis based on scaling and similarity
assumptions has been carried out for the
primary flow variables in the plume. The results
obtained from the model alld the analysis match
well. An analytical expression for the velocity
distributioll in the plume is presented and it has
been found to correlate with experimental
results satisfactorily.

1. Introduction:

Fire accidents are one of the major hazards to
human life and property. In a fire scenario.. its
developments can be divided into two stages;
pre-flashover and post-flashover. Usually
flashover is defined as the transition from a
developing to a fully developed fire in which all
the combustible items in the region have been
engulfed -by the fire. In the pre-flashover stage
all the fues go through the important initial
coherent phase where buoyant gases rise above
the area of the fire source which is undergoing
combustion. thus entraining the surrounding
uncontaminated air. This buoyant flow.
including any flames at the beginning· is known
as a fire plume. In a room with a fire source on
the floor the plume rises and hits the ceiling
where it bends and keeps propagating as a
ceiling jet. Plume generated by a line fire on the
floor and close to a wall is tenned as a wall
plume and needs to be investigated in detail to
characterise the complete flow domain including
the ceiling jet.

Theoretical analyses of plumes can be divided
into two types; (I) integral methods based on
averaging across the plume layer and (2) finite
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difference or differential methods which attempt
to solve the full partial differential equations of
transport in the space considered. In this paper.
the discussion and analyse will be confmed to
the fonner method. There have been nwnerous
publications concerning free plumes. For
example the classic works of Morton eL al.
(1956), Rouse et. aI. (1952). Lee and Emmons
(1961). A comprehensive review of plumes and
ceiling jets can be fOWld from List ( 1982) and
Beyler ( 1986). Although wall plumes are
similar to free plumes few studies have' been
done in this area. Nonetheless, nwnerous
publications which describe laminar and
turbulent flow development close to an adiabatic
or isothennal wall may be found. see Gebhart
(1988). Grella and Faeth (1975). studied a two
dimensional thenna! plume adjacent to an
adiabatic vertical wall experimentally and
measured the mean velocity and weight density
defect profiles in the plume. Sparrow et al.
(1978) carried out a numerical study on wall and

. free plumes for a range of Prandtl Numbers.

The present study deals with a flow induced by a
line fIre on the floor and adjacent to a vertical
wall with side walls on both sides. The end
effects due to the side walls are considered to be
negligible. Thus the flow can be considered as
two dimensional and analysed in cartesian
coordinates. In the following sections an
analytical model and a similarity analysis have
been put forward to characterise this type of
flow. Also a conjecture is presented for the
velocity distribution in the plume.

2. Theory:

The current analysis is based on a method
similar to that employed by Alpert (1975) in the
study of a turbulent ceiling jet In deriving the
conservation equations governing the plum flow,
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the following simplifying assumptions have
been made.

i) The Boussinesq Approximation f1p» 1 is
p-

valid.
ii) The flow is full y turbulent and steady in any
time scale which is considered large compared
to the scale in turbu lence fIuctuations.
iii) The velocities" are much less than sonic
velocity.
iv) The motion is two dimensional.

d J- J- g(p-p-) ~w
dx ux 2dy= dy--

o 0 p- P-
............(3)

where 'tw = shear stress at the wall.

Equation of conservation of energy.

q"=-~ J;U1Cp(T-T-)dY ...(4)
<Ix 0

Conservation Equations:
Averaging the conservation equation:

Referring to the control volwnc ~"- the flow
domain.. see Figure I.. and making the above
assumptions the following conservation
equations can be denved.

Equation of state: pT= p-T-=constant. ...(1)

The governing equations can be transfonned
into simpler Conn by employing average
quantities over the thickness of the wall plmne
layer by a technique which is similar to the
method used by Alpert (1975). These spatial
averages are..

Equation of mass conservation:

~ J~'dY= VE
o

..........(2). ............(5)

where.. E is the entrainment coefficient and V is
defmed by the equation (5). .............(6)

......•....(8)

............(9)

1w
Cr=--2 ...(10)

p-V

o

fg(P--P-)dY=Oh (7)
p-

o

f U1(P-P-)g
p-

Thus.. after the transfoonations the conservation
equations become,.

d
-(Vh)=VE
dx

+- entrainment

\W l
Ul

X

Lwall

noor y

Fig 1: Schematic Diagram of the Flow q'g d
Q'=---=-(VDh)

cpT-p- dx
.......(11)

Equation of conservation of momentum. A further transfonnation is applied to these
equations with respect to the initial conditions of

192



"

the plume. at x =0,. V = Vo. D = Do. and h =
ho. The variables introduced are,.

x Y D h
v=- V*=- D*=- andn=- Thus
'" ho' Vo • Do ,. 'a ho·

after the transfonnations the conservations
equations arc..

3. Numerical Analysis:

Equations (16) ~ (18) were solved numerically
using a differential equatien solver. Solutions
are presented five different initial conditions
which are shown in Table I. Note that the initial

density defect of 6.2 (~) corresponds to an
s

inilialtemperature difference of 796 K which is
considered to be the origin of a thermal plume,.
see Hasemi et a1.,. 1986. The results of these
conditions in non-dimensional parameters are
presented in Fig 2 to 6. The coefficient of
entrainment. E,. is taken as 0.16 which was the
value used by Lee and Emmons (1961). In a
later section the consequences of using different
entrainment coefficient is examined. The
friction factor Cr is taken as 0.001 and it has
been found that using friction factors,. ranging
from 0.01 to 0.001, does not alter the results
appreciably The changes in V and Fr are only of
the oeder of 2% whereas for D and h it is much
less. Hence in subsequent analysis it has been
taken as 0.001. Fig 2 shows the variation of the
plume width with height Apart from close to
the plume origin,. the growth is linear with
height.

with the initial conditions at
X= 0,. V·o= D·o =110 =l (19).

60

.........( 13)

.......•..•..( 12)

.............(14)

4020

_.- prof~le 3 /-

........ profile 2 .:/.
~.~.~

- - profile 6 ..~..///
~:d/...... /

./~0/

..f%/'
~~~ / -- profle 5

f Y// profle 1
1$/ profile 4

.../~ (see Table 1)
/

8

4

o '--"---'--'""'---L--L-..L-J"--L.....I.-..L..-L-..L.-..L.-JI...-J-....L-.&...I

o

d
dX (Y*tl) = V* E .

d 2 D*11 2
-(y* t1>=---CrV*
dX Fro 2

- dQ=-(Y*D*fl)
dX

<D
E
::J
a:
ro
c
o

.(Ii
C
<D

E
=0
C
o
Z

.r:::.
:§ 12

E 4

.c. pr<?file 4 (see Table 1
ti profile 3
~ 3
Q) profile 2
E profle 6 ._:Ja: ~:.,....-

2 .:~:~:.::.:.
(ij

~~...---c ....:;.::.::.---0
·iii ~
c . -------Q) ----E ---

=0 ----- --- profile 5
C --- profile 1
0
Z

0
0 2 4 6

where. Fro= the initial Froud Number =
Vo .. q'g
~,. and Q= . .....(15)
~~ho cpT-p-YoDo

The equations (12) - (14) arc coupled and these
have been uncoupled to arrive at simpler
relations,. which are as follows ..

Non-dimensional Height - (X)

Fig. 2..Streamwise plume width variation

dV* D* 1 V*
-=--2--(Cr+E) (16)

dX y* Fro 11

dl1 D*l1 I
-=(2E+Cc)-----
dX y*2 Fro 2 .......( 17) Non-dimensional Height - (X)

. dO * Q- EV *D *
dX V*l1

.................(18)
Rg. 3. Plume width near the origin
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profile 3
profile 2
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Fig. 5. Streamwise density defect variation

Non-dimensional Height - W

height The change in Froud nwnber. shown in. .
in Fig 6, approach a constant value in all cases.
Thus the suggestions drawn from these
observations are.

Table 1 : Initial Conditions for the Wall Plume

Profile Vo Do ho Fro
no.

.592 6.2 .05 1.0632

2 2.369 6.2 .05 4.2548

3 2.962 6.2 .05 53199

4 3.554 6.2 .05 63831

5 1.25 6.2 .05 2.245

6 1.77 6.2 .05 3.179

Close to the origin the variation of the width is
shown in Fig 3. In profile no. 1. where the
initial velocity is low. a necking fonnation may
be observed which shows due to high buoyancy
force the fluid accelerates and entrains more and
more ambient fluid. After a certain height. it
behaves as other plumes and spreads linearly.
Fig 4 shows the streamwise velocity variation. It
may be observed that after a certain height the
velocity remains constant Fig 5 represents the
density defect or temperature variation in the
flow and it appears to vary inversely with

Rg. 4. Streamwise velocity variation

Non-dimensionaf Height - (x)

•...........(21)UenL.= EV

Entrainment Coefficient:

In general, entrainment is considered to depend
on buoyancy and position. In this model it was
assumed that entraimnent occurs at the outer
edge of the plume where the streamline velocity
was negligible. In the pas~ researchers have
taken this entrainment to be a linear function of
the average or maximum streamwise velocity in
the proflle. This is represented in the following
expression.

where. E is the coefficient of entrainment and
taken as constant. Various values of E have
been taken in the past. Cor example 1) 0.082 by
Morton (1959). 2) 0.125 by Morton el at.
(1956).3) 0.16 by Lee and Emmons (1961). The
effect of choosing these values have been
examined in Fig. 7 to Fig. 11. Instead of taking

60
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--profle5
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(see Table 1)
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Fig. 6. Streamwise Froud number variation

E 12

E = 0.16
J::. Equation (22) /-u
~

E = 0.125 / ... /
E = 0.082 . / .

(1) 8 7· ..
E ./......
.2 / ...
0... / ...
cu /. .. ,...,"c

~/....0
,...,,...,

.(i) 4 ...- ,...,
c //... ,...,"'"
Q)

E
..... ,...,
~.. /,...,

:0 .... ,.,
C

:.,...,
'/

0
Z

0
0 20 40 60

Fig. 7. Plume width variation with entrainment

~"9 v: velocity scales.
IT 9 v: velocity fluctuations.
T: temperature scale.
S: temperature fluctuation

Non-dimensional Height - (X)

604020

6
u:
CD

.D
E
::J

Z
"U
::J
0 2Lt

0
0

Non-dimensional Height - (x)

_ .._.. profile 4 (see Table
_._.;.... profile 3

profile 2
profile 6
protle 5

protle 1

E as constant. it can also be presented as a
function of buoyancy. Similar approach was
considered by Alpert ( 1975) for entrainment in
a ceiling jet. The entrainment is governed by the
expression.

4. Scaling Analysis and Velocity
Distribution in Wall Plumes:

where Ej can be detcnnined from the initial
conditions and a = 3.9 (Alpert. 1975). E at
origin is taken as 0.12. Graphs are plotted in
Fig. 7 to Fig. 11 using equation (22). It is
interesting to note that because the Froud. No.
tend to approach same quantity. entrainment
coefficient would be virtually constant after a
certain distm1ce.

60

E =0.16
Equation (22)

E = 0.125

E =0.082

4020o

c.g
Q)
> 1.5

cu
c
o

.(i)
c
Q)

.~
"'0g 1.0
z

..........(22)
a

E=Ejexp(--2)
Fr

The following length. velocity. and temperature
scales are defined for the wall plume.

Non-dimensional Height - (x)

L: streamwise length scale.
h: cross-stream length scale

Fig. 8. Velocity variation with entrainment

Using these scales. an order of magnitude
analysis is carried out. see Tennekes and Lumley
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......•..(25)

..........(26)

IT 9 h.!.
_.-.(-)2
Um T L

The exercise gives us the following result,.

In order to preserv~ self-similarity at all heights
we must have,.

u 9
- - -.. Constant
Um T

In other words,. it can be said that the velocity
and temperature fluctuations will have same
relative role in their mean profLles. Thus both
the mean and fluctua';"g scales can be
represented by a single scale quantity.

. 1.2e,

'0 ------ E =0.16
Q) 1.0 - ..----
Qi Equation (22)
0 ----_._ ........ E =0.125
:c 0.8

\.(i) ----- E =0.082
c .\Q)

0 0.6 \
cu .\
c V0 0.4.(i) .. ,-
c .:. "-
Q) ~ ..........
E 0.2 ~~~~U
C.
0

0.0Z
0 20 40 60

Non-dimensional Height - (X)

Fig. 9. Density defect variation with entrainment

(1972),. on the momentum and energy transport
equations which are shown below. The
assumption is made that the flow is self similar
and parallel in this situation.

Non-dimensional Height - (x)

In general,. for the velocity distribution across
stream wise direction for the wall plume. we
may expect tha~

u
-= f(um,.y,.x,.h,.buoyancy,. viscous,and
Urn

frictional forces.) (27)

W
0.15

C
(1)

~
Qi

0.100
0
E
(1)

E
0.05c

.~

E
w

0.00
0 20 40 60

Fig. 11. Change of entrainment coefficient [eq.(22)]

60

E =0.16
Equation (22)

E =0.125

E =0.082

4020

------~--------

/~

Momentum:
au au a - geT-Tal

u ax +v dy +dy (uv) T. ...(23)

5 ~---.........,----........_...-.-------

....-

~ 4.
Q>
.n
E
::J

Z
'U 3
::J
ou:

u
-=f(s.~9)
Urn

Otherwise,.

~=f(-hY ,. h
X

,.buoyancy,. viscous"and friction)
Um 0

.......(28)

.......(29)Or,.

Non-dimensional Height - (X)

Fig. 10. Froud number variation with entrainment

Energy:
. aT aT a =-

u ax + v i}y +ay (SV)=O (24)
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c,

where,
. dr. af. df
f~= ~. 0.= OA. fa= ae ....(34)

T - Ta=Tm F(s.~8) (32)

........ (37).

.......(36)

dv dUm
-=-(f-+UmA)
dy dx ..

d-
--(uv) =-um2g~/h

dy

Applying continuity condition in the flow
yields,

J
~ dUm

v=-h (f~·+umA)dS.....(35)
o

The remaining quantities are.

Substituting these quanti ti,::. in equations (23),
the following equation is obtained.

Similar substitutions in energy equation (24)
result in

h dlLn 2 dh. <fA.. de.
(--)f -(-)ff~~+(h-)ffJ..+(h-)ffa

Um dx dx dx dx

h dUm . J~ dh . J~
-(--d)f~ fdS-(-d)f~ f~SdS

Um X Xo 0

dA . J~. de . J~
+(h dx)f~ fAds+(h dx)f~ fa&;-g~

o 0

h dTm db. dA..
(Tm ~)CF-(dx)fF~~+(h dx)fFA+

de. h dUm . J~
(h-)(fa-(--)F~ fdl;-

dx Um dx
o

~ ~

(=)F~Jt~sdS+(h :)F~ Jful1;+
o 0

de . J~ .
(h dx)F~ f9dS-~=O •.••• (38)

o
In accordance with similarity assumptions. the
coefficients in equations (37) and (38) are
constants. Thus fmaJly the following results are
obtained,

~ dUm =Cl, ~ dTm =<:2. }
Um dx Tm dx
dh dA. de' •.(39)

dx =CJ. <Ix h=C4. dx h=Cs

1.20.8

D expL u/Um
• eq. (45)

- best fit

Vx
Re=-.

v

5
g(p-- p}hx

...(30)
vp-V

0.4

0.8

ho
A=fl(Re,-},

x
ho

8=f2(5..-)..
x

0.4

o. 0 "---Io---&...--J.-.....I.-"'---I'-L--L..~....I....:%l~~-L-J

0.0

y/h

Fig. 12. Velocity distribution in wall plume

5 is the new non-dimcnsional parameter
introduced.. which is a relative measure of
inertia.. buoyancy and viscous forces. S can be
viewed as the change of inertia forces as a result
of the interactions between the buoyancy and
viscous forces. Assuming compete self-similarity
in the flow the following equations (31) to (33)
alongwith equation (29) can written..

- ITv=Um 2g (s.~e) ..•.••...•(31)

and. -e¥=TmumH(c;~e) .....••(33)

Differentiating equation (29).. gives..

du dUm
-= f-+lhnA where
dx dx •
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The solutions of the equation (31) and (38) are
set below. It can be noted that the average and
maximum quantities of various properties are
related by a constant factor because of the self
similar profiles in velocity and temperature or
density defect distributions in the flow.

Urn - const. => V - ronst. (40)

h - x (4])

I I
Tm-- =>D-- (42)

x x

Re - x (43)

Further calculations have been perfonned on
their data to extract additional information. The
results are shown in Tables 2 and 3. The
average quantities are found by integration of
the velocity proflles. The summary of the test
conditions are sh.own in Table 2 and various
non-dimensional quantities are tabulated in
Table 3. In accordance with equation (29) a
conjecture, shown in equation (45), is proposed.
It has been tested in all live conditions of the
plume and fOlDld to be correlating satisfactorily.
The values of the exponents in the conjecture
are shown in Table 3. The basic form of
proposed profile is obtained from the two
boundary conditions at x = 0 and 00 for
velocity. However, the conjecture is9

Comparing equations (40) - (42) and equation
(20), it can be inferred that the results from the
scaling and similarity analysis do match with
the solutions of the physical modcl of the plume.

S-x ............(44)
ho ho

u Clln[-Re] Cyln[-S]
-=a; x (l-l;) x (45)
Um

where,

5. Velocity Distribution:

Grella and Faeth (1975) measured velocity
profiles in a turbulent adiabatic plulne at two
locations far away from the sourcc. Thcy used
the burning of an array of small carbon
monoxide jets tangential to the wall as the
buoyancy source. Five different source strengths
were considered by proper adjustment of the jets.

Table 2: Summary of the plume test conditions

No V ho h x D
1 .239 .066 .086 .61 .229
2 .323 .066 .082 .61 .366
3 .238 .066 .146 1.22 .091
4 .331 .066 .177 1.22 .150
5 .483 .066 .150 1.22 .277

Table 3: Values of non-dimensional quantities

No Re- m S n
1 9301 .33 3079 2.4
2 12584 .34 3365 2.44
3 18543 .33 4271 2.25
4 26270 .34 5943 2.38
5 37591 .36 6237 2.4
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y ~ ~
~=-h. m=Cxln[-Re]. n=Cyln[-S]

x x
.....(46)

Constant C can be found from the condition of
the maximum velocity. Constants ex and Cy.
with numerical values of 1121 and 45/ l(>9
respectively, have been detennined from the
experimental results. Figure 12 shows the
experimental data, velocities evaluated using
equation (45) and the best fit curve through the
evaluated values. The values of the exponents m
and n are shown in Table 3 for five cases. These
values vary in the order of 7-8% which indicates
reasonable degree of consistency in the
conjecture.

6. CONCLUSION:

An analytical model, based on integral methods,
to predict spatially averaged strearnwise flow
properties is presented here. Using this model
numerical simulations were carried out An
analysis has been made in the flow domain to

characterise the flow variables with the
assumption of self-similarity in the flow.
Numerical results have been found to match
well with the analysis. Also a conjecture has
been proposed for. the velocity distributions in



the flow. It has been tested with experimental
results and found to be correlating satisfactorily.

Nomenclature:

c•. C2• C1• Ct. Cs constants
eX. Cy constant~

Cr friction factor
Cp heat capacity (KJjkgK)
D. Do density defect (m/s 2

)

E entrainment coefficient
Fr. Fro Froud number
g acceln. due to gravity (m/s2

)

h. ho plume width (m)
q'" heat loss (W/m 2

)

Re Reynolds number
T tcmperature (K)
Ux. V, Vo velocity (m/s)
Um maximum velocity (m/s)
x, y coordinate axes

density (kg/m1
)

non-dimensional coordinate
non-dimensional width
constant, Eq. (22)
functions. Eq. (30)
function. Eq. (34)

subscripts

00, a ambient conditions
o initial conditions
m maximum conditions
ent en~nInent
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