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Abetract For an axIsynunetric, unconfined coflowlng laminar diffusion me thane-air flame, the

cou pltn g procedure between flow and temperature fields vla Bousslnesq approximation In the
momentum equations Is considered In this paper. Th e projection method Is used to solve the flow field
equations with the pseudo-momentum equation and energy equations solved by the Douglas-Gunn
time spltttlng method. Instead of considering the detailed chemical reactions and thennal mdlatlon In

th e name, we consider thermal buoyancy force as the lead In!: driving force, and uSC" experimental data
to construct the thermal source term via a least squares technique, which, In tum, will help us to
u nd erstand the chemical kinetics of flame s.
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1. Introduction

It is well known that combustion processes are very complex phenomena which
depend upon interrelated processes of fluid mechanics. heat and mass transfer.
chemical kinetics. thermodynamics. turbulence. and accompanied by change of phase
in some cases. It is nearly impossible to consider the coupling process of all the factors
when performing numerical simulations; thus. many calculations have been done in
various areas of combustion based on simplifying assumptions. Study of (laminar and
turbulent) coflow diffusion flames is an important subject associated with fuel efficiency
In industrial burners. and associated resulting air pollution. Moreover. there exists a
fundamental curtoslty regarding the mechanisms of soot formation. the chemical and
physical structures of soot. and its interaction with other physical phenomena.
Since Faraday's pioneering work on the chemical history of a candle flame . which was
published as early as 1861 [11. extensive (both experimental and theoretical) studies
have been conducted on this subject. Yet. our knowledge is still far short of complete
understanding of the phenomena.

In this paper. we employ a new method to simulate the flow and temperature field
associated With. an axisymmetric. unconfined coflowmg laminar diffusion flame
resulting from combustion of methane In air. The governing equations are the
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Navier-Stokes (N.-S.) equations in the form of the Bousstnesq approximation. but with
temperature-dependent transport properties. These equations are discreUzed by
standard second-order accurate finite difference methods on a staggered grid. and
solved by the projection method in the form described by Gresho (2). This technique is
formally time-accurate. but because of stability of the laminar diffusion flame. it is used
as a pseudo-time marching procedure to achieve steady solutions. Pseudo-time steps
are computed efficiently by employing DougIas-Gunn time splitting for the momentum
and energy. equations. and optimal successive overrelaxation (SOR) for the pressure
Poisson equation (PPE). To the authors' knowledge. this is the first application of this
method to any but model problems in Cartesian coordinates.

But the more important and novel feature of the present study is the
construction. via a least squares technique and experimental data. of a heat source
term in the thermal energy equation. This source term is . of course. related to the
chemical kinetics of the combustion process. and once it .is known. it is possible to
study the fluid dynamical aspects of the flow without simulating the details of the
chemistry.

2. Physical Problem and Govem~ Equations
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2.1 Physical Problem and Coordinate System
Suppose we are going to consider the

axrsymmetrtc, unconfined coflowing laminar
diffusion methane-air flame ( see Figure 1 ).
The fuel comes from the inner tube while the
air comes from the outer tube. Outside the
outer tube there exists an Insulated solid
boundary. Thus. we can select the cylindrical
polar coordinate system for convenience of
representing the problem.

2 .2 Governing Equations
In this preliminary study. we ignore

effects of chemical reactions. thermal
. radiation ' and concentration induced

buoyancy force. and consider only the >
thermal buoyancy force as the main driving
~orce. We take the gas of the whole region as
air; then the governing equations for this
problem are the continuity. momentum and
energy equations. which can be expressed as
follows:
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where: Re is the Reynolds number. Re = LV/vo : Cr Is the Crashof number.

gj3mL3(T
o-TjOr= : Pr is the Prandtl number. Pr=vo/Oo : 9 is nondimenstonal

~
temperature. 9 = (T- Tj/(To - Tj . .

The ncndtmenstonal kinematic viscosity ~n = vm/vo and thermal d1ffusMty
\jim = am/Oo are all temperature-dependent variables.

2.3 Thermal Source Q
In Eq. (4). there exists a thermal source Q which usually depends on chemical

reaction and thermal radiation. etc. As we know, the overall chemical reaction equation
for the combustion of methane in air is

CH4 + 202 = CO2 + 2H,.o + 6h.

(5)

-,.;.
• ,..;, RT

while Q= 6hACCH,vo,e .
Here. we suppose that Qis also a function of position: that is.

£"
• ...:l -Iii'

Q=J(r. z)6hACCH (.;0 e .
" 2 •.

Using experiment data and the least squares technique we attempt to determine the
function Ilr.zl,

2.4 Temperature-dependent Transport Properties
To Simplify the calculation of momentum and energy equations. we construct the

formula for calculating the variable transport properties as in Ref. [5]. Based on this we
suggest using the following equations for kinematic viscosity and thermal d1ffus1vity of
air at normal pressure:

273.15 + C1 T 2 .5

v=vo T+C
1

(273.15) .

where Vo is the value at O"C; C1 is the constant. C1 = 125: s1m1larly
273.15 + C2 T 2 .4

a = CIc T + C
2

(2'73."'i5)

where 00 is the value at O"C. and c; is the constant. c; = 216
Figures 2 and 3 show the results from above equations and Refs. [6.71

(6)

(7)
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Fig. 3 Thermal dUfusMty of air
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3. Numerical Analysis

3.1 Computational Domain and Grids
For this axisymmetric diffusion flame problem. we

may take a 2-dirnensional region in cylindrical
coordinates as the computational domain:
o S r S RL .0 S z S ZL. with the centerline of the flame at
r=O. and base of flame at z=O for flame ''type d" in K.
Salto et al. (4). RL and ZL are taken as about 10 Urnes
the radius and height of flame . 5Ox200 grid cells are
employed in the present calculation. To avoid
checkerboardtng of the solution. a staggered grid (cf. (9))
as shown in Fig. 4 has been used.

Vz

T,P Vr
+

Fig. 4 Staggered Grid

3.2 Boundary Conditions
For r=0. symmetry conditions are used. t.e.• V. = av./ar= o. The outflow boundary

av 1 av
conditions with the form of T =O, - P+--T =0 are used at r=RL or =ZL. and at

an Re an
z--Q. the velocity distribution Is specified for the outflow of the tubes. The no-slip
condition Is applied at the solid horizontal boundary.

3.3 QuasUinearization and Discretization
The Crank-Nicolson time integration and centered differences for spatial

derivatives are used to dtscretlze the equations. As we know. the velocity and
temperature are strongly coupled in this problem. and all equations are nonlinear. We
linearize them by simply ustng Taylor expansion. t.e,

F{x. Y • u) = F{x. y • yi + F,)x. Y , Yi(Y - yO) + FlJ.lx. y. yi(yx - y) (8)

so as to use the linear solver. say. Douglas-Gunn time splitttng method. to solve the
equations.

3.4 Initial Conditions
To make the problem be well-posed. the ilutial condition for velocity distribution

u(x . 0) = Uo(~ must satisfy the following conditions:

n·uo = n ·w(z . 0) on r
1

where r 1 is a solid boundary moving with velocity w ,
and

V'uo=O in Q
with n betng the problem domain plus boundary.

To make solutions of the velocity and pressure be; sufficiently smooth the initial
pressure distribution should be given by ( see [3] )

with concomitant BCs:

in n (9)

and

ap = n.(vV2u + f - au - u.Vu) on r
1an at
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. aUnP=v-- -F on r 2•an n

where r 2 is a flow-through boundary.
For the cylindrical coordinate system. the pressure poisson equation (8) has the

following form:

~P 1 ap ~p aVr aVr avz avz aVr avz v:
-+--+-=-_·---·--2-·--- . (10)ar' r ar az2 ar Or az az az ar r'

4. Results

.For the thermal energy equation. we tIy to use room temperature as the 1n1tlal
distribution and set homogeneous Neumann conditions at boundaries. From Eq. (5) we
know that Q is very very small at room temperature ( this is physically somewhat like a
flow without ignition). Thus. we set the temperature at the centerline and base of the
flame using experimental data in order to provide thermal energy.

'Projection 2 with OBC' (2) is used to solve the total flow field. leading to
automatic satisfaction of the the continuity equation. The poisson equation for the
potential is solved via opUrnal successive overrelaxatton, and pseudo-momentum
equations. as well as energy equation. are solved by the two-level Douglas-Gunn time
splitting method. The resulting linear tridiagonal algebraic systems in each directions
are solved by LU-decomposition.
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(a)
Fig. 5 Velocity Vector Distribution

(b)

From the calculation. we find that there exists a vortex near the flame tip at the
begmnmg of iteration. due to the large temperature gradient there. and it moves upward
durtng iteration. Near the centerline between the vortex and flame tip. the radial
velocity is nearly zero. 50 we can expect that when the vortex moves out of the top
outflow boundary (z::ZL). the solution will become steady. But there is a difficulty when
the vortex reaches the boundary. Outflow conditions recommended in (2) appear unable
to transmit the vortex through the boundary. leading the nud'terical instab1l1ty.
Nevertheless. the flow field and temperature dis tribution are physically realistic prior to
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this time. Sample results are provided
in Figs. 5 and 6 . Figures 5(a) and 5(b)
show the velocity vector distributions
at top and bottom region of the domain
near the centerllne; the vertical
coordtnate is grid point index. Figure 6
provides the temperature distribution
contour. Of particular interest is the
osclllatory temperature distribution in
the neighborhood of the vortex.

To tmplement the least squares
technique, we let f in Eq . (5) also be a
function of a set of parameters, say
f =f(CI • C; •...• Cn • r . z). We first
choose some guessed values for all the
parameters. make a calculation via
above procedure, and then adjust
them to make

N

S= L(T1 ,m1-TI ,ex/
1=1

,,,

Fig. 6 Temperature Distribution Contour

a m1n1mum. This w1ll provide an effective chemical heat source distribution from which
we expect to derive information on the nature of the chemical kinetics of the system.
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